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Abstract
We show that the real space representation of the interface roughness as
a fluctuating potential in the coordinate space is equivalent to the usual
energy-fluctuation representation for intrasublevel scattering in multi-interface
quantum well structures with generally shaped confinement-potential profiles.
The coordinate picture is, however, more general and can be used for higher-
order effects and multi-sublevel scattering in tunnel-coupled multi-quantum-
well structures. The result is employed to study the interface-roughness-limited
mobility of tunnel-coupled double quantum wells at low temperatures.

1. Introduction

Interface roughness is present in all artificially fabricated layered structures. It causes
unavoidable linewidths in optical spectroscopy [1] and also limits the low-temperature mobility
in modulation-doped narrow semiconductor quantum wells (QWs), heterostructures and
inversion layers [2–6]. In earlier treatments, the energy fluctuation due to the interface
roughness for intrasublevel scattering is given basically by

δE(r‖) = ∂E

∂L
δL(r‖) (1)

where E is the sublevel energy and δL(r‖) is the fluctuation of the well width L at the
in-plane position r‖ [2–6]. The energy δE(r‖) is suitable only for studying intrasublevel
scattering in a single QW, a heterostructure or an inversion layer with one or two interfaces.
The fluctuation energy δE(r‖) in equation (1) is inadequate for treating more complicated
problems such as structures with multiple interfaces separated by thin barriers, higher-order
scattering effects or intersublevel scattering. Recently, Mou and Hong studied the effect of the
distortion of the ground sublevel wave function due to the interface roughness in an infinitely
deep single QW introducing a correction term to the Hamiltonian in equation (1) linear in the
gradient of δL(r‖) [6]. A similar effect was considered earlier, in silicon inversion layers, by
shifting the coordinate of the confinement function rigidly by δL(r‖) at the interface [3, 7].
This approximation is applicable only to single-interface structures. In the present paper, we
generalize equation (1) to multi-interface QW structures and study a more general form for
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the scattering potential which is shown to reduce to equation (1) for intra-sublevel scattering.
The effect of the interface-roughness-induced distortion of the wave function on the mobility
is included in our approach microscopically by investigating higher-order corrections to the
Born approximation, employing a standard diagrammatic perturbation theory. This effect
yields significant (e.g. up to 25%) correction in the range of the parameters studied. The
many-body effect is not considered here [6].

2. Interface roughness potential

A natural microscopic picture for the fluctuation energy for a single QW (for simplicity) is to
write

δE(r‖, z) = ±V±δL±(r‖)δ(z± 1
2L) (2)

where δ(z) is the Dirac delta function and Vl = V+(Vr = V−) is the potential-energy
discontinuity at the left (right) interface at z = −L/2 (z = L/2) as shown in figure 1. While
the expression in equation (2) is intuitively deduced from a standard perturbation theory, its
validity and equivalence to the expression in equation (1) should be examined for a general
confinement-potential structure, including the often used limit of infinitely deep QWs (i.e.
band offsets) with V± → ∞. The effect of the potential in equation (2) on the distortion of
the confinement wave functions is included by going beyond the Born approximation.

Figure 1. Confinement potential-energy for the electrons with an arbitrary band bending. The
quantities Vl and Vr represent potential-energy discontinuities at the left and right interfaces at
z = zl and z = zr .

The inter- and intrasublevel matrix element of the potential in equation (2) is given by

〈f |δE(r‖, z)|i〉 = ±V±δL±(r‖)ψ∗
f (∓L/2)ψi(∓L/2) (3)

where ψi(z) and ψf (z) are sublevel functions. In order to show that equation (3) reduces
to equation (1) for intrasublevel scattering for a general confinement-potential structure in a
single QW, we prove the following identity:

〈ψ |δE(r‖, z)|ψ〉 = −V−δL−(r‖)|ψ(L/2)|2 = ∂E

∂L
δL−(r‖) (4)

where ψ(z) is any sublevel function with an eigenvalue E defined below in equation (5).
Equation (4) is written only for the layer fluctuation at the right interface for simplicity.



Interface-roughness scattering in quantum-well structures 1261

For this purpose, we write the Schrödinger equation as

Hψ = Eψ (5a)

H = H0 + V (z) (5b)

V (z) = Vlθ(zl − z) + Vrθ(z− zr) (5c)

where H is the Hamiltonian without interface fluctuations and V (z) represents the
discontinuities potential-energy steps at the left (Vl = V+) and right (Vr = V−) interfaces at
z = zl , zr (figure 1). In equation (5b),H0 is the rest of the Hamiltonian including an arbitrary
band-bending potential profile around the interfaces in the presence of ionized dopants. We
assume that there is no correlation between the interface fluctuations at the right and left
interfaces at any position r‖ and consider only the fluctuation δzr at the right interface for
convenience. By taking a derivative with respect to zr on both sides of equation (5a), using
∂V (z)/∂zr = −Vrδ(z− zr), and taking an inner product from the left side with ψ∗, we find

∂E

∂zr
= −Vr |ψ(zr)|2. (6)

This expression is identical to equation (4) if one identifies δzr = δL(r‖). Note that the
effect of the wave-function distortion due to δzr (i.e. ∂ψ(z)/∂zr �= 0) is included in the above
derivation. Note also that the above derivation of equation (6) is valid for an arbitrary interface
for a generally shaped multi-QW structure.

The interesting general relationship in equation (6) can be verified for the eigenvalues and
eigenfunctions of a square-well potential, for example, by tediously calculating the eigenvalues
and the eigenfunctions. One can also show that the relationship holds even for an infinitely
deep well. In this limit (i.e. Vr → ∞), the wave function ψ(zr) in equation (6) becomes
infinitesimally small (i.e. |ψ(zr)| ∼ 1/|Vr |1/2 → 0) at the interface, cancelling the factor Vr ,
yielding ∂E/∂zr = −h̄2/(m∗L3) for the ground sublevel as expected.

To summarize the result so far, we have shown for generally shaped multi-QW structures
that the coordinate representation of the interface-roughness scattering potential

δE(r‖, z) = −
∑
j

Vj δLj (r‖)δ(z− zj ) (7)

reduces to the generalized form of the energy fluctuation

δEn(r‖) =
∑
j

∂En

∂zj
δLj (r‖) (8)

for intrasublevel scattering in the nth sublevel with energy En. In equation (7), Vj is the
algebraic potential discontinuity at the j th interface at z = zj and δLj is the layer fluctuation.

3. Mobility in coupled double quantum wells

The result in equation (7) is now applied to study the low-temperature mobility of symmetric
GaAs/AlxGa1−xAs double quantum wells shown in the inset of figure 3. The QWs are
V = 250 meV deep and 140 Å wide. The centre barrier width is 10 Å. The effective mass is
m∗ = 0.67m0 in the QWs andm∗ = 0.9m0 in the barriers. The lowest two sublevels n = 1, 2
or n = 1 are occupied in the range of the electron density studied. The Boltzmann equation is
given by

vnk · u +
2π

h̄

∑
n′k′

[I2(n
′k′, nk) + I4(n

′k′, nk)](φn′k′ − φnk)δ(εn′k′ − εnk) = 0 (9)
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where I2(n′k′, nk) = 〈|〈n′k′|δE|nk〉|2〉av is the Born approximation given in figure 2(a), u

is a unit vector in the field direction, vnk = h̄k/m∗ and av indicates the ensemble average.
The quantity φnk is the distribution function. The quantity I4(n′k′, nk) defined in figure 2(b)
is the fourth-order correction to the Born approximation and represents scattering through the
intermediate states shown by the solid lines in figure 2(b). This term reflects the effect of
the wave function distortion due to the roughness. The crosses there indicate the two-site
correlation relation of the layer fluctuation. The solid lines represent fermion propagators [8].

Figure 2. Irreducible scattering part including the Born approximation (a) and the fourth-order
scattering through the intermediate states shown by the solid lines (b). The crosses indicate the
two-site correlation of the layer function. The solid lines represent fermion propagators.

Equation (9) is solved by introducing the relaxation times τn at the Fermi level:
φnk = τnvnk · u. We assume that the layer fluctuations at different interfaces are uncorrelated
and introduce the correlation length  j by 〈δLj (r‖)δLj ′(r′

‖)〉av = δb2
j δj,j ′ exp(−(r′

‖
−r‖)2/ 2

j ). The mobility equals µ = eτav/m
∗ where τav is the average relaxation time

τav = (τ1ε1F + τ2ε2F )/(ε1F + ε2F ). Here εnF ∝ Nn is the Fermi energy and Nn is the density.
The relaxation times are given by

τ1 = Q0
2,2 −Q1

2,2 +Q0
1,2 +Q1

2,1

√
ε2F /ε1F

(Q0
1,1 −Q1

1,1 +Q0
2,1)(Q

0
2,2 −Q1

2,2 +Q0
1,2)−Q1

2,1Q
1
1,2

τ2 = τ1 (level index 1 ↔ 2) (10)

where

Qmn,n′ = 2π2

h̄A

∑
k′j

(Vj j )
2'

j

n′,n,n′,ne
− 2

j (k
′−k)2/4 cosm θδ(εn′k′ − εnk)

+
π2m∗

2h̄3A

∑
k′

∑
j,j ′
(VjVj ′ j j ′)2

∑
ν,ν ′
'
j

n′,n,ν,ν ′'
j ′
ν,ν ′,n,n′

×e− 2(k′−k)2/8 cosm θδ(εn′k′ − εnk)
×

∫ ∞

0
dε

e−ε/2ε 

εk,k′ + ε − (εµν + εµν ′)/2

{
sign(εk,k′ + ε − εµν)θν(ε)√
(εk,k′ + ε − εµν)2 − 4εk,k′ε

+(ν → ν ′)
}
. (11)

Here the first term represents the contribution from I2(n
′k′, nk) given in figure 2(a) and the

second term is from I4(n
′k′, nk) defined in figure 2(b). In equation (11), m = 0, 1, θ is the

angle between k and k′, A is the area of the QW, ε = h̄2/2m∗ 2 and εk,k′ = h̄2q2/2m∗ with
q = (k + k′)/2. The quantity 'j is defined by

'
j

n′,ν ′,n,ν = δb2
jψ

∗
n′(zj )ψ

∗
ν ′(zj )ψn(zj )ψν(zj ). (12)

The ε-integration in the second term of equation (11) takes the principal part. The quantity
θν(ε) equals unity when the argument of the square root in the denominator under it is positive
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and vanishes otherwise. We further define εµν = µ − εν where µ is the chemical potential
and εν is the νth sublevel. The summation of the intermediate states ν converges rapidly
and it was sufficient to sum up to ν = 8 for the application to be presented below. The
second term in equation (11) is written only for the case where  j ≡  is independent of the
interface, for simplicity. For single-level occupation, the mobility is given by µ = eτ1/m

∗:
τ−1

1 = Q0
1,1 −Q1

1,1 in equation (10).

Figure 3. Electron mobility of 140–10–140 Å symmetric GaAs/AlxGa1−xAs double quantum
wells as a function of the electron density. The interface roughness is indicated by thick hatched
vertical lines in the inset, where the wave functions are plotted for the levelsn = 1, 2. The quantities
 , δbl and δbr are the correlation length and the amplitudes of the layer fluctuation in units of Å.

4. Applications and discussion

The mobility is displayed in figure 3 as a function of the electron density for j = 20 Å for three
cases. Interface roughness is assumed to be significant only at the two interfaces shown by the
thick hatched vertical lines in the inset of figure 3, as occurs in typical GaAs/AlxGa1−xAs
double QWs. The solid curve represents the case where the fluctuation amplitudes are
δb1 = δbr = 5 Å at both interfaces. In this case, the mobility begins to rise slowly above
the density N∗ = 2.1 × 1011 cm−2, when the electrons begin to populate the n = 2 level.
The wave function ψ2(z) of these electrons has a node at the centre of the centre barrier. As a
result, these electrons barely see the roughness δbr , raising the net mobility. This enhancement
effect is subdued somewhat, however, due to the fact that ψ2(z) has more penetration into the
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δb1 interface than ψ1(z). The mobility is low for the solid curve as a whole mainly because
ψ1(z) has a large amplitude at the δbr interface as seen in the inset of figure 3. This fact
makes the mobility low (compared to the dotted curve in figure 3) even for the case δb1 = 0,
δbr = 5 Å (dashed curve) below N∗, although it is slightly higher than that of the solid curve
because δb1 = 0. Above N∗, however, the dashed curve rises much faster than the solid
curve, because the enhanced amplitude of ψ2(z) at the δb1(= 0) interface does not affect the
mobility. For δb1 = 5, δbr = 0 Å (dotted curve), the mobility is very high below N∗ because
the wave function ψ1(z) has a small amplitude at the δb1 interface. Above N∗, however, the
wave function ψ2(z) has a much larger amplitude than ψ1(z) at the δb1 interface, lowering the
mobility nearly by a factor of three.

In the above analysis, the Fermi wave numbers are small, k1F , k2F < 0.0178 Å−1, for
N < 5 × 1011 cm−2 studied in figure 3, yielding knF j < 1 for  j = 20 Å employed. As
a result, the density dependence of the factor exp[− 2

j (k
′ − k)2] in equation (11) is weak.

For a long correlation length  j such that knF j > 1, however, the rate constant Qmn,n′ in
equation (11) can have a strong dependence on the density through this factor. In this case,
the mobility rises more rapidly with N in each section (i.e. N < N∗ and N > N∗) of the
horizontal axis in figure 3.

The mobility depends on the correlation length as shown by the dash–dotted ( = 30 Å)
and dash–double-dotted ( = 10 Å) curves in figure 3. The fourth-order correction reduces
the mobility significantly in the low-mobility regime. For example, the reduction is about 25%
for the dash–dotted curve in the low-density region N < 1011 cm−2 in figure 3 but is much
smaller elsewhere.

We have also studied the mobility of a single QW as a function of the density for
occupations up to the second sublevel. The density-dependent behaviour is very similar to
the δb1 = 5, δbr = 0 Å case shown by the dotted curve in figure 3, as is expected.

5. Summary

In summary, we have shown that the coordinate representation of the interface-roughness
scattering potential in equation (7) reduces to the generalized form of the usual energy-
fluctuation model in equation (8) for intrasublevel scattering. The representation in equation (7)
is useful in treating multi-sublevel scattering in coupled multi-QWs [9]. The result was
employed to study the interface-roughness-limited mobility of coupled double QWs.
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